Recursively defining base b expansion calculators

Our CSE 20 professor defined a bunch of procedures in pseudocode using rather
imperative constructs such as while loops, even though it could be defined using
some epic iterative recursion instead.

procedure half(n : a positive integer)
r:=0
while n > 1
ri=r+1
= —2
return r {r holds the result of the operation}

This could instead be defined with a piecewise function.

half’ : N x N — N
half'(r +1,n —2) ifn>1

T otherwise

half’(r,n) = {

half : N — N
half(n) = half’(0,n)

I'm going to generalize half to any divisor. It’ll be the equivalent to the div
operator, which does integer division.

div :NxNxZ"™ >N

div'(g+1,n —d,d) ifn>d
q otherwise

div'(g,n,d) = {

div:NxZ" = N
div(n,d) = div'(0,n,d)

Because n = dg + r = d(n div d) + (n mod d), let’s define a mod function.

mod: N x Zt = N
mod(n,d) =n —d - div(n,d)

That’s pretty poggers. My professor defined a procedure that calculates the



integer part of log,. As another epic piecewise function,

B={beZ"|b>1}

log :NxNxB—=N
log! (1 n, b) = {log’(r + 1,div(n,b),b) ifn > I?— 1
r otherwise
log:Nx B—N
log(n, b) = log/(0, n, b)

Before I can convert numbers to bases, I’ll first define the set of all base b expan-
sions of a natural number.

First, let D, = {d € N|d < b}, the set of digits available. D, C Ej. Then if
e € Ey, d € Dy, and e # 0, then e o d € E;,. Also, for convenience, let Ej, C E; and
A € E}; in other words, Ej is Ej, but with the empty string.

Finally, I think I’ll implement the “Least significant first” algorithm for calcu-
lating the base b expansion from the right.

base’ : B} x N x B — E,
base’(mod(q, b) o a,div(q,b),b) if g # 0

a otherwise

base’(a, q,b) = {

base : N x B — £

0 ifn=20
base’(\,n,b) otherwise

base(n, b) = {

... I think? CSE 20 is fun.



