Recursively defining base b expansion calculators

Our CSE 20 professor defined a bunch of procedures in pseudocode using rather imperative constructs such as while loops, even though it could be defined using some epic iterative recursion instead.
procedure half(n : a positive integer)

```
r:= 0
```

while $n>1$
$r:=r+1$
$n:=n-2$
return r \{ r holds the result of the operation $\}$

This could instead be defined with a piecewise function.

$$
\begin{aligned}
\text { half }^{\prime} & : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \\
\text { half }^{\prime}(r, n) & = \begin{cases}\text { half }^{\prime}(r+1, n-2) & \text { if } n>1 \\
r & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \text { half }: \mathbb{N} \rightarrow \mathbb{N} \\
& \operatorname{half}(n)=\operatorname{half}^{\prime}(0, n)
\end{aligned}
$$

I'm going to generalize half to any divisor. It'll be the equivalent to the div operator, which does integer division.

$$
\begin{aligned}
& \operatorname{div}^{\prime}: \mathbb{N} \times \mathbb{N} \times \mathbb{Z}^{+} \rightarrow \mathbb{N} \\
& \operatorname{div}^{\prime}(q, n, d)= \begin{cases}\operatorname{div}^{\prime}(q+1, n-d, d) & \text { if } n \geq d \\
q & \text { otherwise }\end{cases} \\
& \operatorname{div}: \mathbb{N} \times \mathbb{Z}^{+} \rightarrow \mathbb{N} \\
& \operatorname{div}(n, d)=\operatorname{div}^{\prime}(0, n, d)
\end{aligned}
$$

Because $n=d q+r=d(n \operatorname{div} d)+(n \bmod d)$, let's define a mod function.

$$
\begin{gathered}
\bmod : \mathbb{N} \times \mathbb{Z}^{+} \rightarrow \mathbb{N} \\
\bmod (n, d)=n-d \cdot \operatorname{div}(n, d)
\end{gathered}
$$

That's pretty poggers. My professor defined a procedure that calculates the
integer part of $\log _{b}$. As another epic piecewise function,

$$
\begin{gathered}
B=\left\{b \in \mathbb{Z}^{+} \mid b>1\right\} \\
\log ^{\prime}: \mathbb{N} \times \mathbb{N} \times B \rightarrow \mathbb{N} \\
\log ^{\prime}(r, n, b)= \begin{cases}\log ^{\prime}(r+1, \operatorname{div}(n, b), b) & \text { if } n>b-1 \\
r & \text { otherwise }\end{cases}
\end{gathered}
$$

$$
\log : \mathbb{N} \times B \rightarrow \mathbb{N}
$$

$$
\log (n, b)=\log ^{\prime}(0, n, b)
$$

Before I can convert numbers to bases, I'll first define the set of all base b expansions of a natural number.

First, let $D_{b}=\{d \in \mathbb{N} \mid d<b\}$, the set of digits available. $D_{b} \subset E_{b}$. Then if $e \in E_{b}, d \in D_{b}$, and $e \neq 0$, then $e \circ d \in E_{b}$. Also, for convenience, let $E_{b} \subset E_{b}^{\prime}$ and $\lambda \in E_{b}^{\prime}$; in other words, E_{b}^{\prime} is E_{b} but with the empty string.

Finally, I think I'll implement the "Least significant first" algorithm for calculating the base b expansion from the right.

$$
\begin{aligned}
& \text { base }^{\prime}: E_{b}^{\prime} \times \mathbb{N} \times B \rightarrow E_{b} \\
& \operatorname{base}^{\prime}(a, q, b)= \begin{cases}\operatorname{base}^{\prime}(\bmod (q, b) \circ a, \operatorname{div}(q, b), b) & \text { if } q \neq 0 \\
a & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\text { base : } \mathbb{N} \times B \rightarrow E_{b}
$$

$$
\operatorname{base}(n, b)= \begin{cases}0 & \text { if } n=0 \\ \operatorname{base}^{\prime}(\lambda, n, b) & \text { otherwise }\end{cases}
$$

... I think? CSE 20 is fun.

