
Recursively defining base b expansion calculators

Our CSE 20 professor defined a bunch of procedures in pseudocode using rather
imperative constructs such as while loops, even though it could be defined using
some epic iterative recursion instead.

procedure half(n : a positive integer)1

r := 02

while n > 13

r := r + 14

n := n− 25

return r {r holds the result of the operation}6

This could instead be defined with a piecewise function.

half ′ : N× N → N

half ′(r, n) =

{
half ′(r + 1, n− 2) if n > 1

r otherwise

half : N → N
half(n) = half ′(0, n)

I’m going to generalize half to any divisor. It’ll be the equivalent to the div
operator, which does integer division.

div′ : N× N× Z+ → N

div′(q, n, d) =

{
div′(q + 1, n− d, d) if n ≥ d

q otherwise

div : N× Z+ → N
div(n, d) = div′(0, n, d)

Because n = dq + r = d(n div d) + (n mod d), let’s define a mod function.

mod : N× Z+ → N
mod(n, d) = n− d · div(n, d)

That’s pretty poggers. My professor defined a procedure that calculates the

1



integer part of logb. As another epic piecewise function,

B =
{
b ∈ Z+

∣∣ b > 1
}

log′ : N× N×B → N

log′(r, n, b) =

{
log′(r + 1,div(n, b), b) if n > b− 1

r otherwise

log : N×B → N
log(n, b) = log′(0, n, b)

Before I can convert numbers to bases, I’ll first define the set of all base b expan-
sions of a natural number.

First, let Db = {d ∈ N | d < b}, the set of digits available. Db ⊂ Eb. Then if
e ∈ Eb, d ∈ Db, and e ̸= 0, then e ◦ d ∈ Eb. Also, for convenience, let Eb ⊂ E′

b and
λ ∈ E′

b; in other words, E′
b is Eb but with the empty string.

Finally, I think I’ll implement the “Least significant first” algorithm for calcu-
lating the base b expansion from the right.

base′ : E′
b × N×B → Eb

base′(a, q, b) =

{
base′(mod(q, b) ◦ a,div(q, b), b) if q ̸= 0

a otherwise

base : N×B → Eb

base(n, b) =

{
0 if n = 0

base′(λ, n, b) otherwise

. . . I think? CSE 20 is fun.
□

2


