
good morning. this is an equation sheet for ece 45 based on past lectures and quizzes. as it
turns out, it is not efficient to have notes and my quiz work in the same notebook, nor is it
efficient to keep copying formulas onto every page
also here’s some dirac delta properties because I keep mixing them up:

x(t)δ(t− t0) = x(t0)δ(t) (dirac delta w/ area x(t0))∫ ∞

−∞
x(t)δ(t− t0)dt = x(t0)

x(t) ∗ δ(t− a) = x(t− a)

one

zeger really finds these quite delicious. i will call these zeger fetishes

2 cos t = ejt+e−jt

2j sin t = ejt−e−jt

two

to prove linear, is passing Ax1(t)+Bx2(t) through the system the same as passing x1 and x2

individually and then doing Ay1(t) +By2(t) on their outputs?
to prove time-invariant, is passing x̂(t− t0) the same as passing x̂ and then
tip remove the extra coefficients first in case the magic happens far outside the Desmos view

window

three

fourier series.

f(t) =

∞∑
n=−∞

Fne
jnω0t

where ω0 =
2π

T
fourier coefficients. can be complex

Fn =
1

T

∫
T

f(t)e−jkω0tdt

for sinusoids, you should use zeger fetishes to turn them into ejt’s, which fit nicely with the
nω0’s in the fourier series thingy.

trig form
1

2
− 1

π

∞∑
n=1

sin(2πnt)

n

expt form
1

2
+

j

2π

∞∑
n=1

ej2πnt

n
+

j

2π

−∞∑
n=−1

ej2πnt

n

1

time-shift property f(t− t0) ↔ Fne
jnω0t0

derivative property f ′(t) ↔ (jnω0)Fn

multiplication property f(t)g(t) ↔
∞∑

k=−∞

FkGn−k (discrete convolution sum)

parseval’s theorem
1

T

∫
T

|f(t)|2dt ↔
∞∑

n=−∞
|Fn|2

→ f∗(t) ↔ F ∗
−n

Xn → H(ω) → XnH(nω0)

don’t forget that for sin/cos, most of the coefficients are 0, so can just deal with them manually
also if you’re getting a zero where you shouldn’t, you probably made a sign error. redo it
and don’t forget that to find the magnitude of a complex number, square the components, not

j. ie you shouldn’t be doing j2. fool
example fourier series
here are some EXAMPLES because screw derivation, using resources >>>
f(t) Fn

cos(kt) F±1 = 1
2 , others 0

sin(kt) F−1 = 1
2j , F1 = − 1

2j , others 0

| sin t| 2
π − 4

π

∑∞
n=1

cos(2nt)
4n2−1 = 2

π

∑∞
n=−∞

e2jnt

1−4n2

triangle wave* F0 = 1
2 , others

j
2πn

*triangle wave is f(t) = t between 0 and 1, and it repeats

four

fourier transform of f(t)

F (ω) =

∫ ∞

−∞
f(t)e−jωtdt

inverse fourier transform of F (ω)

f(t) =
1

2π

∫ ∞

−∞
F (ω)ejωtdω

X(ω) → H(ω) → X(ω)H(ω)

sinc t =
sin t

t
(and sinc 0 = 1)

2

rect is a unit square (so it’s 1 between − 1
2 and 1

2)
if

δ(t) → H(ω) → h(t)

then

x(t) → H(ω) →
∫ ∞

−∞
h(τ)x(t− τ)dτ (convolution integrals)

∫ ∞

−∞
x(t)δ(t− t0)dt = x(t0)

spencer covered this. x(t)δ(t− t0) is a dirac delta with area x(t0)
zeger says u(0) can be 0 or 1 but he initially defined it to be 0 (and then graphed it at 1??)

rect(
t

t0
) ↔ t0 sinc(

ωt0
2

)

δ(t) ↔ 1

1 ↔ 2πδ(t)

f(t− t0) ↔ F (ω)e−jωt0 (SHIFT TIME/FREQUENCY!!!!!!)

f(t)ejω0t ↔ F (ω − ω0)

camel recommends using a table (THIS IS A LINK) for these

five

duality/symmetry property

F (t) ↔ 2πf(−ω)

time derivative

df(t)

dt
↔ jωF (ω)

−jtf(t) ↔ dF (ω)

dω

tf(t) ↔ j · dF (ω)

dω

convolution

x(t) ∗ y(t) =
∫ ∞

−∞
x(τ)y(t− τ)dτ

=

∫ ∞

−∞
x(t− τ)y(τ)dτ

3

https://ethz.ch/content/dam/ethz/special-interest/baug/ibk/structural-mechanics-dam/education/identmeth/fourier.pdf

f(t) ∗ g(t)︸︷︷︸
impulse response

↔ F (ω)G(ω)

f(t)g(t) ↔ 1

2π
F (ω) ∗G(ω)

X∗(t) ↔ X∗(−ω) signals don’t have to be real

X(−ω) = X∗(ω) ONLY if x(t) real!!

f(−t) ↔ F (−ω) time reversal

x(t) real, even ↔ X(ω) real, even

x(t) real, odd ↔ X(ω) purely imaginary (i.e. Re[X(ω)] = 0), odd∫ ∞

−∞
|f(t)|2dt = 1

2π

∫ ∞

−∞
|F (ω)|2dω parseval’s theorem for fourier transforms

f(at) ↔ 1

|a|
F (

ω

a
) time scaling (squishing function → higher frequency)

parseval’s theorem for fourier transforms∫ ∞

−∞
|f(t)|2dt = 1

2π

∫ ∞

−∞
|F (ω)|2dω

some more examples:

cos(ω0t) ↔ πδ(ω − ω0) + πδ(ω + ω0)

sin(ω0t) ↔
π

j
δ(ω − ω0)−

π

j
δ(ω + ω0)

sinc(ω0t) ↔
π

ω0
rect

(
ω

2ω0

)
e−atu(t) ↔ 1

a+ jω
(for a > 0)

1

a+ jt
↔ 2πeaωu(−ω)

some things from god spencer:

— if they pass δ(t) into system, they’re giving you h(t)! i.e. the entire system

δ(t) → H(ω) → h(t)

so h(t) ↔ H(ω) and y(t) = x(t) ∗ h(t) (a convolution) ↔ X(ω)H(ω)

— “diagram” refers to the x(t) → H(ω) → y(t) things

— when multiplying rect funcs, take their intersection

sinx cos y =
1

2
(sin(x+ y) + sin(x− y))

x(t) ∗ δ(t− a) = x(t− a)

(Ax(t) +By(t)) ∗ z(t) = Ax(t) ∗ z(t) +By(t) ∗ z(t) linearity of convlution

tip don’t forget that cosine is even cos t = cos(−t) and sine is odd − sin t = sin(−t)!!!
4

six

ejωt → h(t) → ejωtH(ω)

convolution is commutative, distributive, associative
shift property—f(t− t1) ∗ h(t− t2) = y(t− t1 − t2)
derivative property—y′(t) = f ′(t) ∗ h(t) = f(t) ∗ h′(t), so y′′(t) = f ′(t) ∗ h′(t)
because commutative, order doesn’t matter: Y (ω) = X(ω)G(ω)H(ω)

x(t) → g(t) → h(t) → y(t) = x(t) ∗ g(t) ∗ h(t)

x(t) ∗ δ(t− t0) = x(t− t0)

δ(t) acts as “identity” element

f(t) cos(ω0t) ↔
1

2
F (ω − ω0) + F (ω + ω0)

convolution examples
convolving two squares (side 1, lower left origin) f(t) = h(t) = rect

(
t− 1

2

)
produces a triangle

(base 2, height 1, lower left origin)

rect

(
t− 1

2

)
∗ rect

(
t− 1

2

)
=


t if 0 < t < 1

2− t if 1 < t < 2

0 else

convolving x(t) = e−atu(t), h(t) = e−btu(t) (downwards exponentials only for positive t)
where a, b > 0 makes

y(t) =

{
e−at−e−bt

b−a · u(t) if a ̸= b

te−btu(t) if a = b

convolving f(t) = A rect
(

t
2t0

)
(rectangle of height A centred around origin from −t0 to t0)

with itself produces triangle g(t) centered around origin from −2t0 to 2t0 w/ height 2A2t0

g(t) ↔ G(ω) = F 2(ω) = 4A2t20 sinc
2(ωt0)

fourier transform of fourier series

f(t) =

∞∑
n=−∞

Fne
jnω0t ↔ F (ω) =

∞∑
n=−∞

Fn · 2πδ(ω − n ω0︸︷︷︸
2π
T

)

sum of deltas w/ coeffs 2πFn, “discrete”
fourier transform of impulse s(t) (inf sum of equally spaced deltas w/ equal area, maybe starting

at 0):

s(t) =

∞∑
n=−∞

δ(t− nT) = S(ω) = ω0

∞∑
n=−∞

δ(ω − n ω0︸︷︷︸
2π
T

)

5

from god spencer: to convolve, take one func (the “simpler” one, eg with more constants), flip
it, then slide it along other func. @ every pt where smth changes, multiply the functions

convolving h(t), a triangle that’s h(t) = t only for 0 < t < 1 and 0 elsewhere, with u(t)
produces

y(t) =


0 t < 0
t2

2 0 < t < 1
1
2 t > 1

and if a different h2(t) can be expressed in terms of an h(t) we know, then can use convolution
properties (above) to avoid doing integral bleh again

don’t forget about Y (ω) = X(ω)H(ω), and if finding a specific y(t0) then can just do y(t0) =∫∞
−∞ x(t0 − τ)h(τ)dτ directly (this is actually useful)

seven

S(ω) = ωs

∞∑
n=−∞

δ(ω − nωs)

where Ts sampling period, ωs =
2π
Ts

sampling frequency
if you sample x(t) at integer multiples of period Ts it produces y(t) = x(t)s(t), whose fourier
transform is

Y (ω) =
1

Ts

∞∑
n=−∞

X(ω − nωs) (FOURIER TRANSFORM OF x(t)s(t))

there are also block diagrams but i don’t know how to draw that in latex

x(t) →
⊗

→ h(t) → z(t)

↑
s(t)

omega what it means
ωs sampling frequency
ωc cutoff frequencies of low-pass filter
ωm maximum frequency for bandlimited thingy

so the reconstruction filter H(ω) (an ideal LPF) would be a rect from −ωc to ωc

tip from discussion: if a func is periodic, use its fourier coefficients
for fourier coefficients, Yn = XnH(2πn) (plug into fourier series formula)
ahhhh
careful! y(t)/Y (ω) sometimes means x(t)s(t), sometimes means output of the lti system

eight

really hope there’s no am radio stuff on the quiz . . .
when finding fourier transform of a func being multiplied by a cos/sin, that’s okay. it turns
into deltas which are nice

6

nine

la place transforms!
conventional names: z = σ︸︷︷︸

real

+ j ω︸︷︷︸
imag component

∈ C

for determining whether an exponential explodes or converges,

lim
t→∞

ezt =


0 if σ < 0

∞ if σ > 0

undefined if σ = 0

X(s) =

∫ ∞

−∞
x(t)e−stdt

X(jω) is fourier transf (imaginary axis of s-plane)
these are FOURIER transforms:

e−tu(t) ↔ 1

1 + jω

etu(t) ↔ nothing

but these are the tasty LAPLACE transforms:

e−atu(t) ↔ 1

s+ a
ROC:Re(s) > Re(−a) a ∈ C

−e−atu(−t) ↔ 1

s+ a
ROC:Re(s) < Re(−a)

u(t) ↔ 1

s
ROC:Re(s) > 0

−u(−t) ↔ 1

s
ROC:Re(s) < 0

sin(at)u(t) ↔ a

s2 + a2
ROC:Re(s) > 0 a ∈ R

cos(at)u(t) ↔ s

s2 + a2
ROC:Re(s) > 0

δ(t) ↔ 1 ROC: all of C

e−a|t| ↔ −2a

s2 − a2
ROC:− Re(a) < Re(s) < Re(a) a ∈ C,Re(a) > 0

ROC only cares about real component (so it’s composed of vertical lines), and it doesn’t include
poles
if ROC goes to −∞, anti-causal/left-sided; to ∞, causal/right-sided; otherwise, if bounded
between poles, 2-sided

7

properties

linearity ax(t) + by(t) ↔ aX(s) + bY (s) (coefficients complex)

derivative −tx(t) ↔ dX(s)

ds
(same ROC)

tnx(t) ↔ (−1)n X(n)︸ ︷︷ ︸
nth derivative

(s)

shift in frequency eatx(t) ↔ X(s− a)

shift in time x(t− a) ↔ e−asX(s)

partial fractions (for inverse LTs): to find A, multiply both sides by denominator, plug in s to
make others zero

1

(s+ 2)(s− 1)
=

A

s+ 2
+

B

s− 1
→ s+ 2

(s+ 2)(s− 1)
=

A(s+ 2)

s+ 2
+

B(s+ 2)

s− 1
, s = −2

if factor is squared, differentiate then plug in s
tip: use derivative property to turn squares back into fractions, which can use for inverse LTs

te−a︸︷︷︸
causal

,−te−atu(−t)︸ ︷︷ ︸
anticausal

↔ 1

(s+ a)2

tip: if know σ, multiply func by e−σt and see if it blows up as t → −∞ or ∞ (if so, doesn’t
converge)

8

