ECE 65 reference sheet
idk
uhh
Op-amps
v_o = A(v_+ - v_-)
i_- = i_+ = 0
The op-amp has both a maximum output voltage and current.
V_{s^-} < V_{sat^-} \leq v_o \leq V_{sat^+} < V_{s^+}
Negative feedback
v_+ = v_-
Diodes
On
v_D = V_{D_0}
if i_D \geq 0
.
Off
i_D = 0
if v_D < V_{D_0}
.
Zener
On
v_D = V_{D_0}
if i_D \geq 0
.
Off
i_D = 0
if -V_Z < v_D < V_{D_0}
.
Zener
v_D = -V_Z
if i_D \leq 0
.
Half-wave rectifier
When v_i \geq V_{D_0}
, the diode is on, and
v_o = v_i - V_{D_0}
.
When v_i < V_{D_0}
, the diode is off, and
v_o = 0
.
Circuit
Transfer
Output
Flipping the diode upside down flips the transfer function around.
Full-wave rectifier
Circuit
Transfer
Output
Clipper
When v_i \geq V_{D_0}
, the diode is on, and
v_o = V_{D_0}
.
When v_i < V_{D_0}
, the diode is off, and
v_o = v_i
.
v_o \leq V_{D_0}
v_o \leq V_{D_0} + V_{DC}
v_o \leq V_{D_0} + V_Z
v_o \geq -V_{D_0} - V_Z
-V_{D_0} - V_{DC_2} \leq v_o \leq V_{D_0} + V_{DC_1}
-V_{D_0} - V_{Z_2} \leq v_o \leq V_{D_0} + V_{Z_1}
Circuit
Transfer
Output
Peak detector
Circuit
A load resistor will make the capacitor leak voltage.
Output
The shape of the output signal depends on
\frac{\tau}{T}
. As
\frac{\tau}{T}
decreases, the circuit
departs from a peak detector.
-
An ideal
\frac{\tau}{T} \to \infty
. -
A good
\frac{\tau}{T} >> 1
. -
For
\frac{\tau}{T} << 1
, the capacitor discharges very fast, and the output resembles a rectifier circuit.
Clamp
Identical to the peak detector circuit except the output voltage is taken from the diode instead.
v_o = v_i - (V_p - V_{D_0})
v_o = v_i - (V_p - V_{D_0} - V_{DC})
v_o = v_i - (V_p - V_{D_0} - V_Z)
v_o = v_i + (V_p - V_{D_0})
Circuit
Output
BJTs
The arrow is on the emitter node and points in the direction of the emitter current.
Off
i_B = 0, i_C = 0
if v_{BE} < V_{D_0}
(NPN) or
v_{EB} < V_{D_0}
(PNP).
On
v_{BE} = V_{D_0}
(NPN) or
v_{EB} = V_{D_0}
(PNP) if
i_B \geq 0
.
Active
i_C = \beta i_B
if v_{CE} \geq V_{D_0}
(NPN) or
v_{EC} \geq V_{D_0}
(PNP).
Saturation
v_{CE} = V_{sat}
(NPN) or
v_{EC} = V_{sat}
(PNP)
if i_C < \beta i_B
.
MOSFETs
The arrow is on the source node and points in the direction of the drain current.
NMOS
V_{OV} = v_{GS} - V_{tn}
PMOS
V_{OV} = v_{SG} - |V_{tp}|
Off
i_D = 0
if
V_{OV} < 0
.
Triode
i_D = 0.5 \mu_n \, C_{ox} \, \dfrac{W}{L} \left(2 V_{OV} v_{DS} - v_{DS}^2\right)
i_D = 0.5 \mu_p \, C_{ox} \, \dfrac{W}{L} \left(2 V_{OV} v_{SD} - v_{SD}^2\right)
if
V_{OV} \geq 0
and
v_{DS} \leq V_{OV}
(NMOS) or
v_{SD} \leq V_{OV}
(PMOS).
If i_D = 0
but the MOSFET is on, then
it's in the triode region, and
v_{DS} = 0
.
Saturation (active)
i_D = 0.5 \mu_n \, C_{ox} \, \dfrac{W}{L} \cdot V_{OV}^2 \left(1 + \lambda v_{DS}\right)
i_D = 0.5 \mu_p \, C_{ox} \, \dfrac{W}{L} \cdot V_{OV}^2 \left(1 + \lambda v_{SD}\right)
if
V_{OV} \geq 0
and
v_{DS} \geq V_{OV}
(NMOS) or
v_{SD} \geq V_{OV}
(PMOS).
When analyzing logic gates, if you don't know what state one of the MOSFETs in series is in, trying assuming that it's off.
Small signal model
BJTs
g_m = \frac{I_C}{V_T}
r_o = \frac{V_A}{I_C}
r_\pi = \frac{V_T}{I_B} = \frac{\beta}{g_m}
MOSFETs
g_m = \frac{2I_D}{V_{OV}}
r_o = \frac{1}{\lambda I_D}
For transistor amplifier configurations, "common" refers to the grounded pin. Input is connected to base/gate, and output is taken from the non-grounded pin.
Common collector
Also known as an emitter follower.
A_{vo} = \frac{g_m (R_E \parallel r_o)}{1 + g_m (R_E \parallel r_o)}
R_o = \frac{1}{g_m} \parallel r_\pi \parallel R_E \parallel r_o
R_i = R_B \parallel (r_\pi + (\beta + 1)(r_o \parallel R_E \parallel R_L))
Common drain
Also known as a source follower.
A_{vo} = \frac{g_m (R_S \parallel r_o)}{1 + g_m (R_S \parallel r_o)}
R_o = \frac{1}{g_m} \parallel R_S \parallel r_o
R_i = R_G
Common collector/drain circuits have a gain of slightly less than
1 V/V
.
Common emitter
A_{vo} = -g_m (R_C \parallel r_o)
R_o = R_C \parallel r_o
R_i = R_B \parallel r_\pi
With an emitter resistor:
A_{vo} = \frac{-R_C}{R_E + \left(1 + \dfrac{R_C}{r_o}\right) \dfrac{R_E + r_\pi}{\beta}}
R_o = \frac {(r_\pi \parallel R_E) + \frac{1}{g_m} \parallel r_o} {\dfrac{\dfrac{1}{g_m} \parallel r_o}{R_C \parallel r_o} + \dfrac{r_\pi \parallel R_E}{R_C}}
R_i = R_B \parallel \left(R_E + r_\pi + \frac{\beta R_E}{1 + \frac{R_E + R_C \parallel R_L}{r_o}}\right)
Common source
A_{vo} = -g_m (R_D \parallel r_o)
R_o = R_D \parallel r_o
R_i = R_G
With a source resistor:
A_{vo} = \frac{-g_m R_D}{1 + g_m R_S + \dfrac{R_D}{r_o}}
R_o = R_D \parallel (r_o \, (1 + g_m R_S))
R_i = R_G
Voltage amplifier model
Gain
Circuit voltage gain:
A = \frac{v_o}{v_{sig}}
Amplifier voltage gain:
A_v = \frac{v_o}{v_i}
Open-loop gain:
A_{vo} = \left.\frac{v_o}{v_i}\right|_{R_L \to \infty}
Resistance
Input resistance:
R_i = \frac{v_i}{i_i}
Output resistance:
R_o = \left.-\frac{v_o}{i_o}\right|_{v_i = 0}
Method
-
Draw the bias circuit: open capacitors and set signal sources to zero. Find the bias point parameters.
-
Find the small signal parameters
g_m
,r_o
, andr_\pi
using the bias point parameters. -
Draw the signal equivalent circuit: short capacitors, set DC voltage and current sources to zero, and replace transistors with their small signal models.
-
Find the amplifier parameters
R_i
,R_o
, andA_{vo}
. -
Use the voltage amplifier model and calculated parameters to find the amplifier circuit gain
A
.