MATH 20D cheat sheet
I don't know why it works. Just trust it.
Assumes x
or t
is
the independent variable and y
is dependent.
Separable equations
\frac{dy}{dx} = g(x) \, p(y)
Solve
-
Multiply by
dx
, divide byp(y)
. -
Integrate both sides.
\int \frac{1}{p(y)} \, dy = \int g(x) \, dx
-
Solve for
y
if possible. -
y = D
is a hidden solution whenp(D) = 0
.
Identify
Find g(x)
and
p(y)
.
Linear equations
\frac{dy}{dx} + p(x) \, y = Q(x)
Solve
-
Calculate the integrating factor. Ignore
C
.\mu(x) = e^{\int p(x) \, dx}
-
Multiply both sides by
\mu(x)
. Note that\mu'(x) = \mu(x) \, p(x)
.\mu y' + \mu' y = (\mu y)' = \mu(x) \, Q(x)
You need to show this step.
-
Integrate to solve for
y
.y = \frac{1}{\mu} \int \mu(x) \, Q(x) \, dx
Identify and uniqueness
y
and its derivatives can't be
multiplied by each other or inside another function; they can only
be multiplied by something in terms of
x
.
An initial condition has a unique solution in an interval where
p
and Q
are
continuous.
Exact equations
M(x, y) + N(x, y) \cdot \frac{dy}{dx} = 0
Solve
-
F = \int M \, dx + g(y)
-
N = \frac{\partial F}{\partial y} = \text{(something)} + g'(y)
Find
g'(y)
. You have two expressions forN
. -
g(y) = \int g'(y) \, dy + C
-
Plug
g(y)
intoF
.F(x, y) = C
is a solution.
Identify
Show that
\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}
If not, then multiply both M
and
N
by a special integrating factor
\mu
, and find what
\mu
makes the equation exact. The form
of \mu
is either given (HW 2 Q3) or
-
a function only of
x
. IgnoreC
.\mu = e^{\displaystyle \int \dfrac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} \, dx}
-
a function only of
y
. IgnoreC
.\mu = e^{\displaystyle \int \dfrac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M} \, dy}
\mu
may cause
gained or lost solutions. We
aren't really told how, but it probably has to do with things like
\mu
's denominator being zero.
Homogeneous equations
ay'' + by' + cy = 0
Solve
-
Find the roots of the characteristic equation.
ar^2 + br + c = 0
-
y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}
-
If there is a repeated root, multiply the repeated root's term by
t
.y(t) = C_1 e^{rt} + C_2 t e^{rt} + C_3 t^2 e^{rt}
If the roots are complex
r = \alpha \pm i\beta
, they want a real
solution.
-
e^{(\alpha + i\beta)t} = e^{\alpha t} e^{\beta i t} = e^{\alpha t} (\cos \beta t + i \sin \beta t)
You should show this use of Euler's formula.
-
y(t) = C_1 e^{\alpha t} \cos \beta t + C_2 e^{\alpha t} \sin \beta t
Uniqueness and springs
For second-order equations,
a \neq 0
. There is a unique solution.
This also works for higher order equations.
Spring word problems use this equation for the spring's motion,
with mass m
, damping constant
b
, and stiffness constant
k
.
my'' + by' + ky = F_{ext}(t)
Nonhomogeneous equations
ay'' + by' + cy = f(t)
The following finds a particular solution
y_p(t)
.
Undetermined coefficients
-
Find the solution
y_c(t)
for the homogenous part.ay_c'' + by_c' + cy_c = 0
-
Guess
y_p
based on the terms inf(t)
and its derivatives.This sometimes doesn't work, so you'll have to use the other method.
-
Multiply terms by
t
until there is no repeated term betweeny_p
andy_c
. -
Solve for the coefficients of
y_p
by plugging it into the original equation.ay_p'' + by_p' + cy_p = f(t)
Variation of parameters
-
Find the complementary solution
y_c(t)
to findy_1
andy_2
. Drop the constants.ay_c'' + by_c' + cy_c = 0 \to y_c(t) = y_1 + y_2
-
Set up a system for
v_1'
andv_2'
.\begin{cases} v_1' y_1 + v_2' y_2 = 0 \\ v_1' y_1' + v_2' y_2' = \dfrac{f(t)}{a} \end{cases}
-
Find
v_1
andv_2
. Drop the integration constants.v_1 = \int v_1'
v_2 = \int v_2'
-
y_p = v_1 y_1 + v_2 y_2
This also works with variable-coefficient equations.
Then, to find the general solution,
y(t) = y_c(t) + y_p(t)
Cauchy–Euler equations
at^2 y'' + bty' + cy = f(t)
Solve (homogeneous)
-
Find the roots of the characteristic equation.
ar^2 + (b - a)r + c = 0
-
y(t) = C_1 t^{r_1} + C_2 t^{r_2}
-
If
r = \alpha + i\beta
,y(t) = C_1 t^\alpha \cos(\beta \ln t) + C_2 t^\alpha \sin(\beta \ln t)
-
If
r
is repeated,y(t) = C_1 t^r + C_2 t^r \ln t
-
If the equation is nonhomogeneous, use variation of parameters.
Variable-coefficient equations' uniqueness
y''(t) + p(t) \, y'(t) + q(t) \, y(t) = g(t)
An initial value problem of the above form has a unique solution
if
p
, q
, and
g
are continuous on
(a, b)
.
Linear independence
Method 1
-
Let
C_1 \vec{x_1} + \dots + C_n \vec{x_n} = 0
. -
Show
C_1 = \dots = C_n = 0
for somet
.One way to do this is to use the matrix form, then determine whether its inverse exists by calculating its determinant. If it's nonzero for some
t
, then it's linearly independent. If it's always zero, you'll have to use a different approach.\begin{bmatrix} \vec{x_1} & \dots & \vec{x_n} \end{bmatrix} \begin{bmatrix} C_1 \\ \vdots \\ C_2 \end{bmatrix} = 0 \to \det \begin{bmatrix} \vec{x_1} & \dots & \vec{x_n} \end{bmatrix} \neq 0
Method 2
This only works if the problem says the vectors are solutions of
\vec{x}' = A\vec{x}
.
-
Show that for every
t
,w(\vec{x_1}, \dots, \vec{x_n}) = \det \begin{bmatrix} x_{11}(t) & \dots & x_{n1}(t) \\ \vdots & & \vdots \\ x_{1n}(t) & \dots & x_{nn}(t) \end{bmatrix} \neq 0
Linear systems with a constant-coefficient matrix
\vec{x}' = A\vec{x}
Solve
-
Solve for the eigenvalues
r
.\det(A - rI) = 0
If r_1 \neq r_2
,
-
For each eigenvalue
r
, find its eigenvector\vec{u}
.(A - rI) \vec{u} = 0
-
\vec{x}(t) = C_1 e^{r_1 t} \vec{u_1} + \dots + C_n e^{r_n t} \vec{u_n}
For complex eigenvalues
r_1 = \alpha + i\beta
,
-
You only need to find one eigenvector
\vec{u_1} = \vec{a} + i\vec{b}
because\vec{u_2} = \vec{a} - i\vec{b}
. -
Use Euler's formula and collect the real and imaginary terms.
\begin{aligned} e^{(\alpha + i\beta) t} \vec{u_1} &= e^{\alpha t} (\cos \beta t + i \sin \beta t) \vec{u_1} \\ &= e^{\alpha t} \left( \underbrace{\left(\cos(\beta t) \vec{a} - \sin(\beta t) \vec{b} \right)}_{\vec{x_1}} + i \underbrace{\left(\cos(\beta t) \vec{b} + \sin(\beta t) \vec{a} \right)}_{\vec{x_2}} \right) \end{aligned}
-
\vec{x}(t) = C_1 e^{\alpha t} \vec{x_1} + C_2 e^{\alpha t} \vec{x_2}
If there is a repeated eigenvalue on the homework or midterm, you are probably wrong. But for your information,
-
Solve for
\vec{v}
.(A - rI) \vec{v} = \vec{u}
-
\vec{x}(t) = te^{rt} \vec{u} + e^{rt} \vec{v}
Fundamentals
With a general solution
\vec{x}(t) = C_1 \vec{x_1} + \dots + C_n \vec{x_n}
the fundamental set is
\mathscr{S} = \{ \vec{x_1}, \dots, \vec{x_n} \}
and the fundamental matrix is
X(t) = \begin{bmatrix} \vec{x_1} (t) & \dots & \vec{x_n} (t) \end{bmatrix}
Laplace transform
\mathscr{L}\{f\}(s) = F(s) = \int_0^\infty e^{-st} f(t) \,dt = \lim_{N \to \infty} \int_0^N e^{-st} f(t) \,dt
Examples
\begin{aligned} f(t) &\longleftrightarrow F(s) \\ 1 &\longleftrightarrow \frac{1}{s} && \text{for} ~ s > 0 \\ e^{at} &\longleftrightarrow \frac{1}{s - a} && \text{for} ~ s > a \\ \sin bt &\longleftrightarrow \frac{b}{s^2 + b^2} && \text{for} ~ s > 0 \\ \cos bt &\longleftrightarrow \frac{s}{s^2 + b^2} \\ \end{aligned}
Properties
\begin{aligned} f(t) &\longleftrightarrow F(s) && \text{for} ~ s > \alpha \\ af_1(t) + bf_2(t) &\longleftrightarrow aF_1(s) + bF_2(s) \\ e^{at}f(t) &\longleftrightarrow F(s - a) && \text{for} ~ s > \alpha + a \\ f'(t) &\longleftrightarrow sF(s) - f(0) && \text{for} ~ s > \alpha \\ f^{(n)}(t) &\longleftrightarrow s^nF(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0) \\ t^n f(t) &\longleftrightarrow (-1)^n \frac{d^n F(s)}{ds^n} \\ \end{aligned}
Partial fractions
For \dfrac{p(s)}{Q(s)}
,
-
Nonrepeated linear factors. If the roots are all distinct,
\frac{p(s)}{Q(s)} = \frac{A_1}{s - r_1} + \dots + \frac{A_n}{s - r_n}
-
Repeated linear factors. If
Q(s) = (s - r)^m
,\frac{p(s)}{Q(s)} = \frac{A_1}{s - r} + \dots + \frac{A_m}{(s - r)^m}
-
Quadratic factors. If
Q(s) = \left((s - \alpha)^2 + \beta^2\right)^m
,\frac{p(s)}{Q(s)} = \frac{A_1(s - \alpha) + B_1 \beta}{(s-\alpha)^2 \beta^2} + \dots + \frac{A_m(s - \alpha) + B_m \beta}{((s-\alpha)^2 + \beta^2)^m}
The test will not ask for more than these three cases.
Method
-
If the initial value condition is
w(k)
wherek \neq 0
, then let\begin{cases} y(t) = w(t + k) \\ y'(t) = w'(t + k) \\ y''(t) = w''(t + k) \\ \end{cases}
-
Take the Laplace transform of both sides.
a\left(s^2 Y - sy(0) - y'(0)\right) + b(sY - y(0)) + cY = \mathscr{L}\{f\}
-
Apply properties to solve for
Y(s)
. -
Apply an inverse transform to find
y(t)
.Don't forget
w(t) = y(t - k)
if necessary.
Power series
Ratio test
For
\sum_{n=0}^\infty a_n (x - x_0)^n
the radius of convergence
L = \lim_{n \to \infty} \left| \frac{a_n}{a_{n + 1}} \right|
Taylor series
At x = 0
:
f(x) = \sum_{n=0}^\infty \frac{f^{(n)}(0)}{n!} x^n
Singular points
y'' + p(x) y' + q(x) y = 0
The singular points are when p
and
q
aren't defined.
Method
-
Plug in
\begin{cases} y(x) = \displaystyle\sum\limits_{n=0}^\infty a_n x^n \\ y'(x) = \displaystyle\sum\limits_{n=1}^\infty n a_n x^{n-1} \\ y''(x) = \displaystyle\sum\limits_{n=2}^\infty n(n-1) a_n x^{n-2} \\ \end{cases}
-
Simplify by moving all the terms inside summations.
-
Shift indices so that all summations are in terms of
x^n
. -
Merge all summations into a single summation in terms of
x^n
. Set this all equal to the right hand side. -
Solve for
a_n
.Kisun Lee wants us to collect terms into the following form:
y(x) = a_0 \underbrace{(\dots)}_{y_1} + a_1 \underbrace{(\dots)}_{y_2}