ECE 45 reference sheet
Screw derivation.
A cleaned up version of my old cheat sheet.
Math things
Remember \omega_0 = \frac{2\pi}{T}
. Also, for
phasors,
A\cos(\omega t) \to \boxed{H(\omega)} \to A|H(\omega)| \cos(\omega t + \measuredangle H(\omega))
Zeger fetishes
\begin{aligned} 2 \cos t &= e^{jt} + e^{-jt} \\ 2j \sin t &= e^{jt} - e^{-jt} \end{aligned}
Dirac delta things
\begin{aligned} x(t) \, \delta(t - a) &= x(a) \, \delta(t - a) \\ \int_{-\infty}^{\infty} x(t) \, \delta(t - a) \; dt &= x(a) \\ x(t) * \delta(t - a) &= x(t - a) \end{aligned}
Convolutions
\begin{aligned} x(t) * h(t) &= \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau \\ &= \int_{-\infty}^{\infty} x(t - \tau) h(\tau) d\tau \\ y(t - a - b) &= f(t - a) * h(t - b) ~ \text{(shift)} \\ y'(t) &= f'(t) * h(t) ~ \text{(derivative)} \end{aligned}
For Desmos
You can paste the code directly into Desmos.
\sinc
\sinc t = \frac{\sin t}{t}
\rect
, r(t)
r\left(t\right)=\left\{-\frac{1}{2}\le t\le\frac{1}{2}:1,0\right\}
Unit function, u(t)
Wolfram Alpha calls this the step function, step(x).
u\left(t\right)=\left\{t\le0:0,1\right\}
Triangle/ramp, T(t)
T\left(t\right)=\left\{0\le t<1:t,0\right\}
Impulse train
\begin{aligned} s(t) &= \sum_{n = -\infty}^\infty \delta(t - nT) \\ S(\omega) &= \omega_s \sum_{n = -\infty}^\infty \delta(\omega - n\omega_s) \\ X_s(\omega) &= \frac{1}{T_s} \sum_{n = -\infty}^\infty X(\omega - n\omega_s) ~ \text{(for $x(t) s(t)$)} \end{aligned}
Fourier series stuff
Fourier series
f(t) = \sum_{n = -\infty}^\infty F_n e^{jn\omega_0 t}
Fourier coefficients
F_n = \frac{1}{T} \int_T f(t) e^{-jn\omega_0 t} dt
LTI systems
Y_n = X_n H(n\omega_0)
Properties
\begin{aligned} f(t - a) &\is F_n e^{jn\omega_0 a} ~ \text{(time shift)} \\ f'(t) &\is jn\omega_0 F_n ~ \text{(derivative)} \\ f(t) g(t) &\is \sum_{k = -\infty}^\infty F_k G_{n - k} ~ \text{(multiplication)} \\ \frac{1}{T} \int_T |f(t)|^2 dt &\is \sum_{n = -\infty}^\infty |F_n|^2 ~ \text{(Parseval's)} \\ f^*(t) &\is F^*_{-n} \end{aligned}
Examples
\cos(kt) |
F_{\pm 1} = \frac{1}{2} , others
0
|
\sin(kt) |
F_{-1} = \frac{1}{2j} ,
F_1 = -\frac{1}{2j} , others
0
|
|\sin t| |
F_{-1} = \frac{1}{2j} ,
F_1 = -\frac{1}{2j} , others
0
|
triangle wave* |
F_0 = \frac{1}{2} , others
\frac{j}{2\pi n}
|
*f(t) = t
between
0 and 1,
repeating
Fourier transforms time
Fourier transform
F(\omega) = \int_{-\infty}^\infty f(t) e^{-j\omega t} dt
Inverse fourier transform
f(t) = \frac{1}{2\pi} \int_{-\infty}^\infty F(\omega) e^{j\omega t} d\omega
LTI systems
\begin{aligned} y(t) &= x(t) * h(t) \\ Y(\omega) &= X(\omega) H(\omega) \end{aligned}
Properties
\begin{aligned} f(t - a) &\is F(\omega) e^{-j\omega a} ~ \text{(time shift)} \\ f(t) e^{jat} &\is F(\omega - a) ~ \text{(frequency shift)} \\ f(t) * g(t) &\is F(\omega) G(\omega) ~ \text{(convolution)} \\ f(t) g(t) &\is \frac{1}{2\pi} F(\omega) * G(\omega) ~ \text{(multiplication)} \\ \frac{df(t)}{dt} &\is j\omega F(\omega) ~ \text{(derivative)} \\ -jtf(t) &\is \frac{dF}{d\omega} ~ \text{(derivative)} \\ F(t) &\is 2\pi f(-\omega) ~ \text{(duality/symmetry)} \\ \sum_{n = -\infty}^\infty F_n e^{jn\omega_0 t} &\is \sum_{n = -\infty}^\infty F_n \cdot 2\pi\delta(\omega - n\omega_0) ~ \text{(Fourier series)} \end{aligned}
There are other less-used properties, like Parseval's theorem, in the old cheat sheet.
Examples
\begin{aligned} \sinc(a t) &\is \frac{\pi}{a} \rect\left(\frac{\omega}{2a}\right) \\ \rect\left(\frac{t}{a}\right) &\is a\sinc\left(\frac{\omega a}{2}\right) \\ \cos(a t) &\is \pi\delta(\omega - a) + \pi\delta(\omega + a) \\ \sin(a t) &\is \frac{\pi}{j}\delta(\omega - a) - \frac{\pi}{j}\delta(\omega + a) \\ \delta(t) &\is 1 \\ 1 &\is 2\pi\delta(\omega) ~ \text{($e^{j\omega_0t}$ can be derived by freq. shift)} \\ e^{-at} u(t) &\is \frac{1}{a + j\omega} ~ \text{(where $a > 0$)} \\ \frac{1}{a + jt} &\is 2\pi e^{a\omega} u(-\omega) \end{aligned}
Laplace transform
X(s) = \int_{-\infty}^\infty x(t) e^{-st} dt
Properties
\begin{aligned} x(t - a) &\is e^{-as} X(s) ~ \text{(time shift)} \\ e^{at} x(t) &\is X(s - a) ~ \text{(frequency shift)} \\ -t x(t) &\is \frac{dX(s)}{ds} ~ \text{(derivative)} \\ t^n x(t) &\is (-1)^n X^{(n)}(s) ~ \text{($n$th derivative)} \end{aligned}
Examples
\begin{aligned} e^{-at} u(t) &\is \frac{1}{s + a} & \text{ROC:} & \re(s) > \re(-a) \\ -e^{-at} u(-t) &\is \frac{1}{s + a} & \text{ROC:} & \re(s) < \re(-a) \\ \delta(t) &\is 1 & \text{ROC:} & \, \text{all of $\mathbb{C}$} \\ \cos(at) u(t) &\is \frac{s}{s^2 + a^2} & \text{ROC:} & \re(s) > 0 \\ \sin(at) u(t) &\is \frac{a}{s^2 + a^2} & \text{ROC:} & \re(s) > 0 \\ e^{-a|t|} &\is \frac{-2a}{s^2 - a^2} & \text{ROC:} & -\re(a) < \re(s) < \re(a) \end{aligned}